3,407 research outputs found

    Limit Your Consumption! Finding Bounds in Average-energy Games

    Get PDF
    Energy games are infinite two-player games played in weighted arenas with quantitative objectives that restrict the consumption of a resource modeled by the weights, e.g., a battery that is charged and drained. Typically, upper and/or lower bounds on the battery capacity are part of the problem description. Here, we consider the problem of determining upper bounds on the average accumulated energy or on the capacity while satisfying a given lower bound, i.e., we do not determine whether a given bound is sufficient to meet the specification, but if there exists a sufficient bound to meet it. In the classical setting with positive and negative weights, we show that the problem of determining the existence of a sufficient bound on the long-run average accumulated energy can be solved in doubly-exponential time. Then, we consider recharge games: here, all weights are negative, but there are recharge edges that recharge the energy to some fixed capacity. We show that bounding the long-run average energy in such games is complete for exponential time. Then, we consider the existential version of the problem, which turns out to be solvable in polynomial time: here, we ask whether there is a recharge capacity that allows the system player to win the game. We conclude by studying tradeoffs between the memory needed to implement strategies and the bounds they realize. We give an example showing that memory can be traded for bounds and vice versa. Also, we show that increasing the capacity allows to lower the average accumulated energy.Comment: In Proceedings QAPL'16, arXiv:1610.0769

    Compositional bisimulation metric reasoning with Probabilistic Process Calculi

    Full text link
    We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation

    Partial Order Reduction for Reachability Games

    Get PDF
    Partial order reductions have been successfully applied to model checking of concurrent systems and practical applications of the technique show nontrivial reduction in the size of the explored state space. We present a theory of partial order reduction based on stubborn sets in the game-theoretical setting of 2-player games with reachability/safety objectives. Our stubborn reduction allows us to prune the interleaving behaviour of both players in the game, and we formally prove its correctness on the class of games played on general labelled transition systems. We then instantiate the framework to the class of weighted Petri net games with inhibitor arcs and provide its efficient implementation in the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case studies and demonstrate its efficiency

    Online Bin Covering: Expectations vs. Guarantees

    Full text link
    Bin covering is a dual version of classic bin packing. Thus, the goal is to cover as many bins as possible, where covering a bin means packing items of total size at least one in the bin. For online bin covering, competitive analysis fails to distinguish between most algorithms of interest; all "reasonable" algorithms have a competitive ratio of 1/2. Thus, in order to get a better understanding of the combinatorial difficulties in solving this problem, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyzing input with restricted or uniformly distributed item sizes. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures. Two classic algorithms for online bin packing that have natural dual versions are Harmonic and Next-Fit. Even though the algorithms are quite different in nature, the dual versions are not separated by competitive analysis. We make the case that when guarantees are needed, even under restricted input sequences, dual Harmonic is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.Comment: IMADA-preprint-c

    A Constraint Oriented Proof Methodology based on Modal Transition Systems

    Get PDF
    In this paper, we present a constraint-oriented state-based proof methodology for concurrent software systems which exploits compositionality and abstraction for the reduction of the verification problem under investigation. Formal basis for this methodology are Modal Transition Systems allowing loose state-based specifications, which can be refined by successively adding constraints. Key concepts of our method are projective views, separation of proof obligations, Skolemization and abstraction. The method is even applicable to real time system

    Average-energy games

    Get PDF
    Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this objective arises naturally in several applications, and that it yields interesting connections with previous concepts in the literature. We prove that deciding the winner in such games is in NP inter coNP and at least as hard as solving mean-payoff games, and we establish that memoryless strategies suffice to win. We also consider the case where the system has to minimize the average-energy while maintaining the accumulated energy within predefined bounds at all times: this corresponds to operating with a finite-capacity storage for energy. We give results for one-player and two-player games, and establish complexity bounds and memory requirements.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Regular Languages Definable by Lindström Quantifiers

    Get PDF
    In our main result, we establish a formal connection between Lindström quantifiers with respect to regular languages and the double semidirect product of finite monoids with a distinguished set of generators. We use this correspondence to characterize the expressive power of Lindström quantifiers associated with a class of regular languages

    On Zone-Based Analysis of Duration Probabilistic Automata

    Full text link
    We propose an extension of the zone-based algorithmics for analyzing timed automata to handle systems where timing uncertainty is considered as probabilistic rather than set-theoretic. We study duration probabilistic automata (DPA), expressing multiple parallel processes admitting memoryfull continuously-distributed durations. For this model we develop an extension of the zone-based forward reachability algorithm whose successor operator is a density transformer, thus providing a solution to verification and performance evaluation problems concerning acyclic DPA (or the bounded-horizon behavior of cyclic DPA).Comment: In Proceedings INFINITY 2010, arXiv:1010.611
    • …
    corecore